9. IVANOV A.p., on the periodic motions of a heavy symmetric solid with impacts on a horizontal plane. IzV. AN SSSR, MIT 2,1985.
10. MAGNUS K. KREISEL. Theorie und Anwendungen, 1971. /Russian translation/, Moscow, Mir, 1974.

Translated by J.J.D.

PMK U.S.S.R., Vol.49,No.5,pp.557-561,1985
0021-8928/85 \$10.00+0.00
Printed in Great Britain

THE PROBLEM OF CONSTRUCTING A LYAPUNOV FUNCTION *

A.P. BLINOV

An algorithm which, for a wide class of problems, enables a Lyapunov function with a negative-sign dexivative to be reconstructed as a Lyapunov function with a negative-definite derivative, is proposed. This algorithm supplements the well-known method /1/ of reconstructing a Lyapunov function. Examples are considered.

Consider a set of differential equations of perturbed motion

$$
\begin{equation*}
x_{i}^{*}=f_{i}(x), f(0)=0, x \doteq R^{n}, f(x) \in C^{y}(Q),\{0\} \in \Omega \subset R^{n} \tag{1}
\end{equation*}
$$

We will assume that for (1) Eyapunov's function $V_{0}(x)$, which is positive definite in the domain Q and whose time-derivative is non-positive in this domain and vanishes in the manifold M - Ω by virtue of Eqs. (1), is known.

We shall formulate the problem of determining the functions $V_{v}(x)(v \leqslant n-1)$ and the constants $\mu_{4}>0$, for which the sum

$$
\begin{equation*}
Y(x)=V_{0}(x) \div \sum_{x=1}^{F} \mu_{v}{ }_{v}(x), \quad p \leqslant n-1 \tag{2}
\end{equation*}
$$

(the quantity p is refined while solving the problem) will be positive definite, and its time derivative is, by virtue of (1), a negative-definite function in Ω.

We shall show that for the additional assumptions introduced below this problem has the following solution.

Suppose the manifold M is described by the equations $S_{1}(x)=0, \ldots, S_{m}(x)=0$, which are
s'e in Q with respect to certain m variables, for example

$$
x_{j}=x_{j}^{0}\left(x_{m+1}, \ldots, x_{n}\right), x_{j}^{0}(0)=0, j=1 \ldots \ldots m
$$

We shall determine the functions f_{i}° and $\Phi_{k}(i, k=1, \ldots n)$ using the equations

$$
\begin{gather*}
f_{i}^{0}\left(x_{m+1} \ldots, x_{n}\right)=f_{i}\left(x_{1}^{c}\left(x_{m+1}, \ldots, x_{n}\right), \ldots, x_{m}^{0}\left(x_{m-1}, \ldots\right.\right. \tag{3}\\
\left.\left.x_{n}\right), x_{n+1}, \ldots x_{n}\right) \\
\Phi_{k}\left(x_{n}, x_{n+1}, \ldots, x_{n}\right)=-\int_{i}^{x_{i}} f_{k}^{0}\left(x_{m-1}, \ldots, x_{n}\right) d x_{n}+d_{0} \tag{4}
\end{gather*}
$$

Here $\mathbb{U}_{0 n}$ is an arbitrary function of the coordinates $\quad x_{m-1}, \ldots, x_{n}$, in a number of which the coordinate x_{k} does not occur, and $\Phi_{0 k}(0)=0$. (When $h \geqslant m+1$ x_{k} is omitted in the lefthand side of (4)).
if the functions f_{i} do not depend on x_{n-1}, \ldots, x_{n}, we will assume that $f_{i}=0$.
wr shall determine the function $F_{*^{1}}(x)$ in the form of the sum

$$
V_{* 1}(x)=\sum_{k=1}^{n} f_{k} \mathbf{u}_{k}(x)
$$

in which the constants 7 will be determined below.
We shall write the time-derivative of this function by virtue of (I)

$$
F_{* 1}^{*}(x)=\sum_{i=1}^{n} f_{i}(x) \sum_{k=1}^{n} \lambda_{k} \frac{\partial n_{k}(x)}{\partial x_{i}}
$$

[^0]$$
\sum_{k=1}^{n} \lambda_{\lambda_{k}} \frac{\partial \Phi_{h}(x)}{\partial x_{i}}=-\lambda_{i} f_{i}^{\circ}(x)
$$
after regrouping the terms we will obtain
\[

$$
\begin{equation*}
V_{*^{1}}(x)=-\sum_{i=1}^{m} \lambda_{i} f_{i}(x) f_{i}^{o}(x)+\sum_{k=m+1}^{n} f_{k}(x) \sum_{i=1}^{m} \lambda_{i} \frac{\partial \nu_{i}(x)}{\partial x_{k}}+\sum_{i, k=m+1}^{n} \lambda_{k} f_{i}(x) \frac{\partial D_{k}}{\partial x_{i}} \tag{5}
\end{equation*}
$$

\]

In Eq. (5) the first sum is non-positive on M and the non-positive terms $f_{k}(r) \partial 0_{k}(x) \partial r_{i}$ (on N, occurring in the latter sum for any $\lambda_{j}>0(j=1, \ldots, n)$. Therefore, by choosing the coefficients λ_{j} we can attempt to satisfy the inegualities

$$
\begin{equation*}
V_{* 1}^{*}(x) \leqslant 0, V_{* 1}{ }^{*}(x) \neq 0 \tag{6}
\end{equation*}
$$

if not for all $x=M T \Omega$, then for $x \leqslant M \cap \Omega_{1}, \Omega_{1} \subset \Omega$, where Ω_{1} is a domain bounded by the surface $V_{0}(x)=h$ (h is some constant). When passing through the domain with respect to the surface M the derivative $V_{* 1^{*}}(x)$ changes sign. For convenience we shall further assume that the domains Ω, Ω_{1} are coincident.

We can note two simple special cases for choosing the required λ_{j}.
Case 2. There is at least one number $l_{*}=\{m+1, \ldots, n\}$, for which $\partial \Phi_{h_{*}}(x) \partial x_{h_{*}} 0$ and $\partial \Phi_{k_{*}}(x) \cdot \partial x_{k} \equiv 0 \quad$ for $k \in\{m+1, \ldots, n\}, \quad k \neq k_{*}$.

In this case it is sufficient to assume $\lambda_{k_{*}}=1, \lambda_{j}=0, j \in\{1, \ldots, n\}, j \neq k_{*}$ for inequality (6) to hold.

Case 2. For all $k, q=m+1 \ldots, n ; i=1, \ldots, m$ and for at least one $i_{*} \equiv\{1, \ldots m\} o \Phi_{i}$ $\partial x_{q} \equiv 0, \partial \Phi_{i_{\psi}} / \partial x_{k}=0, \partial \Phi_{i_{\psi}} \partial x_{i} \equiv 0$.

To satisfy inequalities (6) it is here sutficient to assume $\lambda_{i_{*}}=1, \lambda_{j}=0, j=\{1, \ldots n\}$.
$j \neq i_{*}$. (In some cases the arbitrariness of the choice of the function $\Phi_{0 ;}(x)$ can also be used to reconstruct Lyapunov's function).

The inequalities (6) signify that the manifold $M_{11} \in \Omega$, in which $V_{* 1}=0$, does not agree with the manifold M and the cross-section $M_{1}=M \cap M_{11}$ has dimensions which are smaller by at least one than those of M.

Therefore, if we can indicate the number $\mu_{1}>0$ for which the functions $V_{0}(x)+\mu_{1} \|_{* 1}(x)$. $\left(-H_{0}(x)-\mu_{1} H_{*}(x)\right.$ are positive on $\Omega \backslash\{0\}$ and $Q M_{1}$ respectively, then the sum $V_{0}(x)-\mu_{i}(x)$. $V_{1}(x)=V_{* 1}(x)$ will represent the new Lyapunov function for which the manifold M_{1} degenerates into a point or has dimensions which are less than those of M.

In the first case (for (2)) $p=1$, and in the second, using the scheme described, we can construct the following function l_{2} (for (2)), the constant μ_{2}, the manifold M_{2} etc. up to I_{μ}, μ_{1} for p, for which,$\mu_{j}=\{0\}$.

If we cannot immediately indicate the number μ_{1} then, bearing in mind the continuity of the function $V_{* 1}(x)$ in Ω and the equation $V_{* 1}(0)=0$, we wan choose the numbers δ and $\mu_{11}(0<$ $\delta<1,0<\mu_{1} \leqslant 1$) and the natural number λ_{1}, such that the compact $U_{0}=\{x \in \Omega:\|x\| \leqslant \delta\}$ lies in the domain Q and at the same time the following inequalities hold:

$$
\left(-\mathrm{H}_{* 1}^{X_{1}-1}(x)\right) \leqslant \frac{1}{2} f_{0}(x), x=L_{0} ;\left(-\mu_{11}\right) V_{*^{1}}^{2 P_{1}-1}(x) \leqslant \frac{1}{2} \min _{x_{-2}} I_{0}(x)
$$

(U is the closure of the domair $O{ }_{V}{ }_{0}$).
It is obvious that the inequalities (6) hold for the time-derivative of the function $V_{x^{1} 1_{1}-1}(x)$ by virtue of (1), as for $l_{* i}(x)$, only if $l_{*_{1}}(x) \neq 0$ on M. (This adaitional condition is assumed to hold henceforth).

The inequalities (6) will also hold in the domain G. M - G, enclosedbetween the surfaces $S_{i}(x)=-\varepsilon(i=1, \ldots m)$ for fairly small $\varepsilon>0$.

Further, the natural number A_{2} is found, for which the following inequality will holk in the closure of the domain $V_{0} G$:

$$
\frac{d}{d t} V_{* 1}^{2 N_{2}-1}(x) \leqslant \frac{1}{2}\left|V_{0}(x)\right|
$$

(the derivative on the left is calculated by virtue of (1)) and the number $\mu_{12} \in(0,1]$ is found, for which

$$
\mu_{12} \frac{d}{d t} V_{* 2}^{2 N_{1}-1}(x) \leqslant \frac{1}{2} \min _{x \in v^{\prime} G}\left|V_{0}(x)\right|
$$

Hence it follows that, assuming $\mu_{1}=\min \left\{\mu_{11}, \mu_{12}\right\}, N=\max \left\{N_{1}, N_{2}\right\}$ and $l_{1}=V_{* 1}^{2 N-1}$, we will obtain a new Iyapunov functior $F_{0}-\mu_{1} V_{1}$ with the abovementioned properties.

Example I. The set of equations $2 /$

$$
x_{1}=\cdots x_{1}-3 x_{2}^{2}, x_{2}-s_{3} x_{2}-x_{2}^{3}
$$

since here

$$
\begin{aligned}
& f_{1}^{\prime \prime}=2 x_{2}^{2}, \Phi_{1}\left(x_{2}, x_{2}\right)=-2 x_{1} z_{2}^{2}-\Phi_{01}\left(x_{2}\right) \\
& f_{2}^{\prime}=-2 x_{2}^{3}, \Phi_{2}\left(x_{2}, x_{2}\right)=1_{2} x_{2}
\end{aligned}
$$

(which corresponds to Case 1), then, assuming $\lambda_{1}=0, \lambda_{2}=1$ in (5), we will obtain $V_{1}=1_{1}^{\prime} x_{2}^{4}$, and for any $\mu_{1}>0$ the function V is positive definite, and

$$
V^{\prime}=-x_{1}^{2}+2 x_{1} x_{2}^{2}\left(1-x_{8}^{2}\right)-x_{2}^{4}\left(1+2 x_{2}^{2}\right)\left(\mu_{1}=1\right)
$$

is negative definite in all the phase plane.
Example 2. The set of equations/3/

$$
\begin{aligned}
& x_{1}=x_{2}, x_{2}^{\prime}=-a x_{2}+x_{3}, x_{3}=-\phi\left(x_{y}\right)-\Phi\left(x_{2}\right) \\
& a>0, \psi\left(x_{1}\right) \in C^{2}\left(R^{1}\right), \varphi\left(x_{2}\right) \in C^{2}\left(R^{1}\right), \psi(0)=\varphi(0)=0
\end{aligned}
$$

when the following conditions hola:
a) $\psi\left(x_{1}\right) x_{1}>0, x_{1} \neq 0$

$$
\text { b) } a \varphi\left(x_{2}\right) / x_{2}-\psi^{\prime}\left(x_{1}\right)>0, x_{2} \neq 0 ; \psi^{\prime}\left(x_{1}\right)=d \psi / \partial x_{2}
$$

admits of the positive definite Lyapunov function

$$
\left.\mathrm{r}_{0}=a \int_{0}^{x_{1}} \psi(\xi) d \bar{z}+\psi\left(x_{1}\right) x_{2}+\int_{0}^{x_{2}} \varphi()_{0}\right) d \xi+\frac{1}{2} x_{3}^{2}
$$

for which the derivative $H_{0}=\left\{\psi^{\prime}\left(x_{1}\right)-a \underset{\left.\left(x_{2}\right) / x_{2}\right\}}{ } x_{2}{ }^{2}\right.$ vanishes in the plane $x_{2}=0$ by virtue of condition b).
We have

$$
\begin{aligned}
f_{1}{ }^{0} & =0_{1} f_{2}=x_{3}, f_{3}{ }^{9}=-4\left(x_{1}\right) \\
\Phi_{1} & =\Phi_{01}\left(x_{2}, x_{3}\right), \Phi_{2}=-x_{2} x_{5}+\Phi_{02}\left(x_{3}\right), \Phi_{3}=\psi\left(x_{1}\right) x_{3}+\Phi_{03}\left(x_{3}\right) \\
\text { Assuming } \quad \Phi_{31}\left(x_{2}, x_{3}\right) & =1 / 2 x_{2}^{2}, \Phi_{02}=\Phi_{03}=0, \text { we will obtain }
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{i=1}^{3} f_{i} \frac{\partial \Phi_{1}}{\partial x_{i}}=-a x_{2}+x_{i} z_{3} \\
& \sum_{i=1}^{3} f_{i} \frac{\partial \Phi_{2}}{\partial x_{i}}=-x_{3}^{2}+\left[\Psi\left(x_{1}\right)+\varphi\left(x_{2}\right)+a x_{3}\right] x_{2} \\
& \sum_{i=1}^{3} f_{i} \frac{\partial \Phi_{2}}{\partial x_{i}}=-\psi^{2}\left(x_{2}\right)+\Psi\left(x_{i}\right) \Psi\left(x_{2}\right)+f^{\prime}\left(x_{1}\right) x_{2} z_{i}
\end{aligned}
$$

Assuming, then that $\lambda_{3}=\lambda_{2}=\lambda_{3}=1$ (this choice of coefficients here frees us from determining $\quad V_{2}$), we will have

Since V_{y} when $x_{2}=0$ does not change sign, the domain Ω_{2} can be chosen arbitraxily, and the number μ_{1} is then defined for the new Lyapunov function $F=V_{0} \div \mu_{1} V_{1}$.

Example 3. In /4/ the problem of stabilization in a field of the central force of the circular motion of a particle, controlled by the reaction u, is solved. The equation of the pertrubed motion of a material particle

$$
\begin{align*}
x_{1}^{\prime} & =z_{2}, x_{2}=r+b u_{3} x_{3}^{\prime}=\left(1+x_{1} / r\right) u \tag{7}\\
u & =-\frac{b x_{2}+w}{\beta}, \quad v=-\frac{\mu}{\left(r+x_{3}\right)^{2}}+\frac{\left(\sqrt{\mu r}+x_{3}\right)^{2}}{\left(r+x_{1}\right)^{2}} \\
u & =\frac{\sqrt{\mu r}+x_{3}}{r\left(r+x_{3}\right)}+\frac{1}{r^{3}}\left(\lambda r^{2} x_{3}-\sqrt{\mu r}\right)\left(x_{1}+r\right) ; \quad \mu, r, b, \beta, \lambda=\text { const }>0
\end{align*}
$$

lends itself to a positive definite Lyapunov function $/ 4 /$, the time-derivative of which, by virtue of (7), vanishes on the manifold M, defined by the equation $b x_{2}+w=0$. Solving this equation for x_{2}, we obtain

$$
f_{1}^{6}\left(x_{5}, x_{3}\right)=-w / b, f_{2}^{0}\left\{x_{1}, x_{3}\right\}=v_{1}, f_{3}^{0}\left(x_{1}, x_{3}\right) \equiv 0
$$

Assuming $\lambda_{1}=1, \hat{\lambda}_{2}=\lambda_{3}=0$, in the neighbourhood of the point $x=0$ we have

$$
V_{41}=\Phi_{01}\left(x_{3}\right)+\frac{\lambda r}{2 b} x_{3}+\frac{1}{b}\left(\frac{1}{r^{2}}+\lambda\right) x_{1} x_{3}-\frac{\sqrt{\mu r}}{b r^{3}} x_{1}^{2}+o\left(x^{2}\right)
$$

To eliminate the linear term, we shall use the arbitrariness in choosing the function $\phi_{0 n}$ setting

$$
\mathrm{q}_{02\left(x_{3}\right)}=-\frac{\hat{2}^{*}}{20} x_{3}
$$

Then $T_{i}=V_{* 1}$.
Assuming (to simplify the notation) that $b=4 / r_{2} \lambda=4 / r^{2}$, we will find the quantity

$$
\left.F_{\theta}+\mu_{1} V_{1}=-2 \beta u^{2}+\mu_{1} \quad\left[\ln \left(1 \div x_{1} / r\right)+x_{1}^{2} / r^{2}+4 x_{1} / r\right] \times\left(1+x_{1} / r u\right)-x_{2}\left(\beta r u+x_{2}\right)\right]
$$

which is negative on $M \backslash\{0\}$ and vanishes on M_{1}, determined by the equations

$$
x_{2} \equiv 0, \quad x_{3}=\frac{\sqrt{\mu r}\left(2 r-x_{1}\right) x_{1}}{5 r^{2}+8 r x_{1}+4 x_{1}^{2}}
$$

Further, determining r_{2}, we can show that the derivative V_{2} is negative definite on M_{1} i.e. $M_{2}=\{0\}$.

For system (l) of order two we can show that if the function V_{0} is known and in the domain Q the equation $S\left(x_{1}, x_{2}\right)=0$, which describes the manifold M, is uniquely solvable for x_{2} (or x_{1}), and the phase trajectories intersect M without touching, then the following inequality occurs in $\Omega \backslash\{0\}:$

$$
f_{1} \frac{\partial S}{\partial x_{1}}+f_{2} \frac{\partial S}{\partial x_{2}} \neq 0
$$

such that the unknown function V can be constructed always.
In fact, after transferring in (1) to polar coordinates using the equations $x_{1}=r \cos 0$. $S\left(x_{1}, x_{2}\right)=r \sin \theta, \theta \in[0,2 \pi]$ (or $x_{1}=r \sin \theta, S\left(x_{1}, x_{2}\right)=r \cos 0$) the manifold M coincides with the straight line $\theta=0, \theta=\pi$, on which the derivative θ° is determined by the set of equations $\theta^{\circ}=\vartheta(\theta, r), r^{*}=R(\theta, r)$, which corresponds to (1), unlike zero for $r \neq 0$.

Without loss of generality, we can assume that

$$
\theta^{*}=\vartheta(0, r)>0, \quad \theta^{*}=\vartheta(\pi, r) \nless 0, \quad r>0
$$

If the inequality $\vartheta(\pi, r)>0$ occurs (the point $x_{1}=0, x_{2}=0$ is a stable focus), we will determine the periodic function, odd with respect to θ, of the period 2π,

$$
V_{1}= \begin{cases}-r^{2} \sin 2 k \theta, & |\theta|,|\theta-\pi| \leqslant \frac{\pi}{4 k} \\ r^{2} \sin \frac{2 k}{2 k-1}\left(\theta-\frac{\pi}{2}\right), & -\pi\left(1-\frac{1}{4 k}\right) \leqslant \theta \leqslant-\frac{\pi}{4 k}\end{cases}
$$

and if the inequality $\vartheta(\pi, r)<0$ occurs, we will determine

$$
V_{1}= \begin{cases}-r^{2} \sin k \theta, & |\theta|,|\theta-\pi| \leqslant \frac{\pi}{2 k} \\ -r^{2}, & \frac{\pi}{2 k} \leqslant \theta \leqslant \pi\left(1-\frac{1}{2 k}\right)\end{cases}
$$

(k is an odd natural number, λ is the lowest degree of the expansion of the function $V_{0}(r \cos \theta$, $r \sin 0$) with respect to the powers r).

The function V_{1}, determined in this way, is continuous in Ω together with the partial derivatives, and its time derivative, by virtue of (1), has the form

$$
V_{1}=\left\{\begin{array}{l}
-2 k \vartheta_{1} \cos 2 k \theta-R_{1} \sin 2 k \theta, \quad|\theta|,|\theta-\pi| \leqslant \frac{\pi}{4 k} \\
\frac{2 k}{2 k-1} \vartheta_{1} \cos \frac{2 k}{2 k-1}\left(\theta-\frac{\pi}{2}\right)+R_{1} \sin \frac{2 k}{2 k-1}\left(\theta-\frac{\pi}{2}\right) \\
\frac{\pi}{4 k} \leqslant \theta \leqslant \frac{4 k-1}{4 k}
\end{array}\right.
$$

when $\vartheta(\pi, r) \leqslant 0 ;$

$$
V_{1}= \begin{cases}-k \vartheta_{1} \cos k \theta-R_{1} \sin k \theta, & |\theta|,|\theta-\pi| \leqslant \frac{\pi}{2 k} \\ -R_{1}, & \frac{\pi}{2 k} \leqslant \theta \leqslant \pi \frac{2 k-1}{2 k}\end{cases}
$$

when $\vartheta(\Omega, r) \geqslant 0$. Here $\vartheta_{1}=r^{i} \vartheta(\theta, r), R_{1}=\lambda r^{i-1} R(\theta, r)$.
Since the value $k=k_{1}$ exists, for which the derivative V_{1} will be negative definite on M, then for $k=k_{2}>k_{1}$ the number $\varepsilon, \pi(4 k)>\varepsilon>0$, will be found for which V_{1} will be negative definite in the sectors $|\theta|<\varepsilon,|\theta-\pi|<\varepsilon$.

It further remains to determine the value $\mu_{1}>0$, for which the functions $V=V_{0}+\mu_{1} V_{1}$, ($-V$) will be positive definite in Ω.

Note that this reconstruction of Lyapunov's function can be used to estimate the time of arrival of the phase point in a specified domain $/ 5 /$.

The author thanks V.A. Samsonov for useful comments.

REFERENCES

1. Chetayev n.g., The Stability of Motion. Gostekhizdat, Moscow, 1955.
2. MERKIN D.P., Introduction to the Theory of the Stability of Motion. Nauka, Moscow, 1976.

BARBASHIN E.A., Introduction to the Theory of Stability. Nauka, Moscow, 1967.
4. RUMYANTSEV V.V., The optimal stabilization of controlled system. PMM, 34,3,1970.
5. BLINOV A.P., The optimal stabilization of controlled systems. PMM, 46,3,1982.

Translated by f.z.

PMM U.S.S.R., VO2.49,No. 5,pp. 561-567,1985
$0021-8928 / 85 \$ 10.00+0.00$
Printed in Great Britain
Pergamon Journals Itd.

the approximate synthesis of perturbed non-vibrating SYSTEMS WITH ONE DEGREE OF FREEDOM*

L.D. AKULENKO

The pattern of the symthesis of a control which is optimal in speed of resp response for non-vibrating systems of a quite general form with one degree of freedom is discussed. The results of an analysis of such systems by the maximum principle /1/ are used these results are based on construeting the switching curve of a relay control $/ 2 /$. The picture of an approximate synthesis in the neighbourhood of a quiescent point (the origin of coordinates) obtained for controlled vibrating systems by asymptotic methods is complemented by the results obtained $/ 3 /$.

1. Statement of the problem of synthesis that is optimal as regards speed of response for perturbed non-vibrating systems, 2.1. The initial control problem. Consider the following perturbed controlled dynamic system with one degree of freedom:

$$
\begin{align*}
& x^{*}=y, \quad y^{*}=1(x, y, u)+\varepsilon F(x, y, u) \| \tag{1.1}\\
&(x, y) \equiv G \subseteq R_{2} ; x(0)=x^{\circ}, y(0)=y^{\circ}
\end{align*}
$$

Here x, y are the system's coordinate and its velocity, i.e. the genexalized phase variables, R_{2} is the phase plane, a dot means differentiation with respect to time $t \subseteq[0, T \mid(T<\infty)$; u is a scalar control piecewise-smooth function such that $|u(0)| \leqslant 1 ; \varepsilon \in \mid 0$. $\left.\varepsilon_{0}\right\}$ is a small numerical parameter $\left(0<\varepsilon_{0} \ll 1\right.$, and f, F are smocth functions of x, y and u in the domain under consideration (the perturbation function F may be contimuously dependent on ε). The additional properties (smoothmess, growth, etc,) of the functions f and F, and of the domain G are discussed below. It should be noted that the constraints on the control u of the form $r^{-}(x, y$, $\varepsilon) \leqslant u \leqslant r^{+}(x, y, e)$ are reduced to those discussed by the linear change

$$
u=1_{2}\left(r^{+}+r^{-}\right)+v_{2}\left(r^{+}-r^{-}\right) v, v \approx[-1, \quad 1]
$$

(where v is the new control).
For the perturbed system (1.1) we formulate the problem of defining the law of the control that is optimal regarding speed of response in the form of the synthesis of $u(x, y, v)$ which, for sufficiently smali $\varepsilon>0$, brings the phase point $(x, y) \in G$ to the origin of coorainates (the point (0,0$)=G$). It is assumed that the solution of the optimal synthesis for the unperturbed problem ($\varepsilon=0$) is known and is in the form of a control switching curve of a relay character 1. 2/.

Below we discuss the case of non-vibrating systems (non-oscillating objects, /2/), for which the unperturbed switching curves have the simplest form: the curve consists of two semitrajectories of the unperturbed system (1.1), going to the origin and corresponding to the constant extreme values $u= \pm 1$. In $/ 2 /$ the sufficient conditions are given under which the synthesis of the control $u(x, y)$, optimal regarding speed of response in the whole of the plane R_{2}, or in a certain open domain $G \in H_{2}$ which includes the neighbourhood of the origin, and has qualitatively the same form as that for the simplest dynamic system (1,1): $x^{*}=k$, $|\mu| \leqslant 1$. Namely, "each optimal control has no more than one switching, and the switching line passes from the second to the fourth quadrant touching the x_{2}-axis $\left(x_{2}=y\right)$ at the oxigin" (see /2/).

The sufficient conditions of this picture of the optimal synthesis are as follows (see /2/). It is assumed that the function f is continuously differentiable with respect to all arguments and satisfies the monotonicity conaition with respect to u

$$
\begin{equation*}
f_{u}^{*}(x, y, u)>0,(x, y) \in G,|u| \leqslant 1 \tag{1.2}
\end{equation*}
$$

[^1]
[^0]: *PrikI. Matem. Mekhan.,49,5,724-729,1985

[^1]: *Prin Matem, Mehar, 49, 5.730-73. 1905

