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A.IP. BLINOV 

An algorithm which, for a wide class of problems, enables a Lyapunov 
function with a negative-sign derivative to be reconstructed as a Lyapunov 
function with a negative-definite derivative, is proposed. This algorithm 
supplements the well-known method /l/ of reconstructing a Lyapunov function, 
Examples are considered. 

Consider a set of differential equations of pertuxbed motion 

xi- = li (*f7 f (8) = 0. 5 E fin, I; (r) E C' (Q), (0) E B c 8" (3) 

We will assume that for (1) Lyapunov's function I‘, fx),which is positive definite in the 
domain 0 and whose time-derivative is non-positive in this domain and vanishes in the manifold 
Al c R by virtue of Eqs.(1), is known. 

We shall formulate the problem of determining the functions I-,.(X) (13 < 12 - 1) and the 
constants pT > 0, for which the sum 

(the quantity p is refined while solving the problem] will be positive definite, and its time 
derivative is, by virtue of (l), a negative-definite function in Q. 

We shall show that fox the additional assumptions introduced below this problem has the 
following solution. 

Suppose the manifold M is described by the equations S1 (zr) = 0, . . St s,(s) = 0. which are 
-_ .e In 0 with respect to certain m variables, for example 

"f t Tj" (.&I. . . *. x-*n), ZJO (of = 0, j = f, . . ~~ m 

We shall determine the functions fro and Oh- (i, k = 1, . . I. R) using the equations 

!," (&,,,l. . . I, Jn) = fi (*ZIG (x,,+1. - . ., &J, I * ‘1 crmo (2&l, . I” (3) 
G&f, a&l, * . ., r,) 

a>&. fr;;, x,+1, . . . 9 +-j$i’ir,_,... t SJ dt, f Eator (41 

Here @0k is an arbitrary function of the coordinates in a number of which 
the coordinate xk does not occur, and CD,, (U)= 0. 

XI?,-1. I I .I x,, 
(Whan k> ?n + 1 

hand side of (4)). 
xy is omitted in the left- 

if ti:e functions fi do not depend on X,-I, .._, z,,, we will assume that ji"s ct. 
CE shall detersmine the function ITa (2) in the form of the sum 

in which the constants h;r will be determined below. 
We shall write the time-derivative of this function by virtue of (1) 

Since for i & ~3 
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afterregroupinqthetermswewill obtain 

i=l k=m+f. id i. h-=m--l 

In Eq.(5) ti*e firstsumis non-positive onMandthe non-positive terms fk (x)i3~)k(x)ar, (on ?:; , 
occurringinthelattersumfcrany kj) U (J' == 1, .., n). Therefore,bychoosingthecoefficients 
l,j wecan attempt to satisfy the inequalities 

'1=*x* (f.) < 0, V*1' (.x) +z 0 ifi) 
if not for all J -7 ‘II ̂; n. then for x55 .?I fi f?,, S?, Z R, where Q, is a domain bounded by the 
surface V,(b)= il (h is some constant). When passing through the domain with respect to the 
surface M the derivative I',,'(r) changes sign. For convenience we shall further assume that 
the domains R,G, are coincident. 

We can note two simple special cases for choosing the required hi. 
Case 1. There is at least one number /<,e {m i_ 1, . . ..n). for which 8mD,,(~)a~8,f!I and 

d&, (z).'&* zz 0 for kc {m + 1. . . . . n), k+kk,. 
1n this case it is sufficient to assume 1-k* = 1, i&j = 0.1~ (1, . . . . a), j+ k, for inequality 

(6) to hold. 
Case 2. For all k, g = m + 1. . . ., t?; i = 1, . . _, 

&YQ z 0, &Di,%%?* zz 0, dcDi*'8.r+ f 0. 
m and for at least one i,f (1, . . . . rn) ti@k 

To satisfy inequalities (6) it is here sufficient to assume ?,,_= f,%, = 0.j = (1, . . ..n}. 
i=+ f,. (In some cases the arbitrariness of the choice of the function @,o~(s) can also be 
used to reconstruct Lyapunov's function). 

The inequalities (6) signify that the manifold .+I,, C Q , in which t7*1' = 0, does not 
agree with the manifold 4 and the cross-section ill, = ~7s jq AV,~ has dimensions which are 
smaller by at least one than those of M. 

Therefore, if we can indicate the number p I >. 0 for which the functions f.. is) A i_~~t-.+~ {ii. 
(--I‘,' (J) - ~,1-,1' (rjj are positive on r!‘\{(J) and !!\AVl respectively, then the SCID) I-, (.r) T pi,!, (~1. 
I', (4 = j-*1 (s) will represent the new Lyapunov function for which the manifold Bf, degenerates 
into a point or has dimensions which are less than those of M. 

In the first case !for 12)) 1' = t, and in the second, using the scheme described, we can 
construct the following funcclon l‘? (for (2) 1, the constant I_'~, the manifold .?I: etc. up to 
1‘ Y' IJ-1. for p, for which .I/: -- {(I). 

If we cannot immediately indicate the number p1 then, bearing in mind the continuity of 
the function I',1 (s) in 0 and the equation 1.,1(O) = 0, we can choose the numbers d and ~~~(0.:; 

6<l,O < 11~~ < I) and the natural number x, , such that the compact c', = (2~ R: ji s ii :< 6} 
lies in the domain $1 and at the same time the fallowing inequalities hold: 

(U is the closure of the domain. (.! \ I.,). 
It is obvious that the inequalities (6) hold for the time-derivative of the function 

1',1"~-1 (,:,J by virtue of (1) , as for l.*i’ (J) I only if 1‘,1 (J) _+ (J on M. (This additional condition 
is assumed to hold henceforth). 

The inequalities 16) will also hole! in the domain C.. Ii: G.enclosedbetweexthe surfaces 
Si (s) = -c (i -= 1, . . . m) for fairly small t' ; 0. 

Further, the natural number .\? is fcuzG, for which the following inequality will hclS 
in the closure of the domain I-&G: 

(the derivative on the left is calculatet? by virtue of (1)) and the number pl?E(O, l]is found, 
for which 
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(which corresponds to Case 1), then, assuming &= O,R,= S in (5), we will obtain V1=X/$t, 

and for any pi>0 the function V is positive definite, and 

v' z - zSp+ Zz& fl - zr2) - i$ fl i_ lzS*j (pl = if 

is negative definite in all. the phase plane. 

Example 2. The set of equations /3/ 

zx' = Z*, 2; = - 4% -k *a, %' = -g (4 - 9 (4 
a > 0, 2p (4) f C" (E"), 9 (4 E Cl (R'), r (0) = a (0) = 0 

when the following conditions bold: 

b) ‘~9 (Xp)/X~ -'#I (21) > 0, % # 0; 9' ("1) = a$@% 

admits of the positive definite Lyapunov function 
l't 

r.,_=a~V.(r)d~i.~('i!Iti~9(j)dSi;~13~ 
a 0 

for which the derivative I"*'= i~'(~*j--~f2*)j~*IrpZ vanishes in the plane tn= 0 by virtue of 

condition b). 
We have 

Assuming, then that X1=?*=&= 1 (this choice of coefficients here frees us fxom 
determining F, f, we wiU have 

ri aa '!a 2*? + * (5>).T,J - z2z3, I',-: =s - ariq - ** (q) - z32 f 

3*2$ I*" (Qf 4 a + fl -i- [$ (4 f 9: Ml .% - 9 (4 9 t4 

Since S3* when ~-0 does not change sign, the domain R, can be chosen arbitrarily, 
and the number p1 is then defined for the new Lyapunov function I'= I"@ -+ &l,V,. 

Example 3. In /4/ the problem of stabilization in a field of the central force of the 
circul.ar motion of a particle, controlled by the reactfan U, is solved. The equation of the 
pestrubed motion of a material particle 

lends itseM to a positive definite Lyapunov function /4/, the time-derivative of which, by 
virtue of (7), vanishes on the manifold M, defined by the equation bz, J_ w= 0. Salvim this 
equation for 

Assuming 

To eliminate the linear term, 
setting 

we shall use the arbitrariness in choosing the function Qeu,,, 
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which is negative on M\(O) and vanishes on Ml, determined by the equations 

Further, determining l,, We can show that the derivative 1;' is negative definite on 
M, i.e. .%f2 = {O). 

For system (1) of order two we can show that if the function 1', is known and in the 
domain !! the equation S(.rl, x2) = 0, which describes the manifold M, is uniquely solvable for 
52 (or ~~1, and the phase trajectories intersect M without touching, then the following 
inequality occurs in O\{O}: 

such that the unknown function V can be constructed always. 
In fact, after transferring in (1) to polar coordinates using the equations I~ = rcos0. 

s (11, I?) = r sin 0. 0 E (0, 211 (or x1 = rsin 8. S (Jo, Q) = rcos e) the manifold M coincides with 
the straight line 0 = 0, 8 = X, on which the derivative 8' is determined by the set of equations 
8' = 6 (0, r), r’ = R(6, r), which corresponds to (11, unlike zero for r+ 0. 

Without loss of generality, we can assume that 

0' = 6 (0, r) > U. 8' = B (a, r) 2 0, r > 0 

If the inequality6 (x. r) > 0 occurs (thepointr, = 0, 3; = 0 is a stable focus), we will 
determine the periodic function, odd with respect to 6, of the period 2n, 

and if the inequality 6 (n, r)<O occurs, we will determine 

(k is an odd natural number, i. is the lowest degree of the expansion of the function lio(rcos@, 
rsin e) with respect to the powers r). 

The function Ii,, determined in this way, is continuous in Q together with the partial 
derivatives, and its time derivative, by virtue of (l), has the form 

~-2~~~~~~2~e-R~~irl3h-0, jq, ie-nl<-&- 

when V(X, r)<O: 

when ~?(n.r).>~(J. Here B, = r,8 (0. r), H, = l.r’-lR (e, r). 
Since the value k = k, exists, for which the derivative I‘,' will be negative definite on 

M, then for k = k2> k, the number e. x (U)>e >O, will be found for which 1'; will be negative 

definite in the sectors 1 f3 1 <E, 10 - z 1 <e. 
It further remains to determine the value rl> 0, for which the functions v = I‘, T p,l-,. 

(-1") will be positive definite in Q. 
Note that this reconstruction of Lyapunov's function can be used to estimate the time of 

arrival of the phase point in a specified domain /5/. 
The author thanks V.A. Samsonov for useful comments. 
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she pattern of the synthesis of a control which is opthimaZ in sped Of resp 

response for non-vibrating systems of a quite general fO?-m With one degree 
of freedom is discussed. The results of an analysis of such systems by the 
maximum principle /I/ axe used; these results are based on constructing 
the switching curve of a relay control /2/. The picture of an approximate 
synthesis in the neighbourhood of a quiescent point (the origin of coordinates) 
obtained for controlled vibrating systems by asymptotic methods is 
complemented by the results obtained /3/. 

1. Statement Qf the problela of synthesis that is opri~3a~ a5 regards 
speed of response for perturbed mm-vibrating systems, l;l. The init;ial cclnrrbl 
pxoblem. Consider the following perturbed controlled dynamic system with one degree of freedom: 

*' = y, y' = f (i. y. U) - Cl"‘ (s, y, U) 1 I1.f) 
(s, y) E G c Rn; s (0) = 2. y (0) = y" 

Here r, y are the system's coordinate and its velocity, i-e, the generalized phase variables, 

AZ is the phase plane, a dot means differentiation with respect to time fZ lo, Tl (T< m); u 
is a scalar c5ntrol piecewise-smooth function such that ]u fi) I< 1; eEit.I. e,i is a sroalf mmeri- 
cad parameter (0 < ccl < fj, md is F are smootli functions of i. y an23 a In the domain under 
consi2eratian ithe pertilrbation function F may be continuously dependent on E), The addition&. 
properties (smoothness, growth, etc.! of the functions f and F, and of the domain G are 
discussed below. It should be noted that the constraints on the control u of the form r-(x, y+ 
e) ~< u < r+ (2, y, e) are reduced to those discussed by the linear change 

u = r 2 (r' + r-f + I/? (r+ - r-) v, u 5 [--1, 11 

(where L‘ is the new control). 
For the perturbed system fl,l) we formulate the problem of defining the law aE the control 

that is optimal regarding speed of response In the for m of the synthesis of ~t(r. gS r)whicb, for 
sufficiently small e> 0, brings the phase point ji,g)EIG to the origin of coordinates <the 
point (0, 0) GZ G) * It is assumed that the solution o f the optima2. synthesis for the unperturbed 
problem (E = If) is known and is in the form of a control. switching curve of a relay character 
/I, 2/. 

Below we discuss the case of non-vibrating systems (non-oscillating objects, /2/), for 
which the unperturbed switching curves have the simplest form: the curve consists of two 
semitrajectories of the unperturbed systerr: (1.11, going to the ox&gin and corresponding to the 
constant extreme values n= 51. In l2i the sufficient conditions are given under which the 
synthesis of the control u(?~ y) r q%imal regarding speed of response in the whole of the 
plane &, or in a certain open domain GC: & which includes the neighbourhood of the origin, 
and has gualitativeiy the same form as that for the simplest dynnmic system (1.1>: 2” = 82, 
1 I( I< 1. Namely, "each oPti.mal control has no morethanone switching, and the switching line 
passes from thesecond to the foilrth quadrant touching the 
(see ,/2/j. 

rr-axis (x2 = y) at the origin" 

/Z/i. 
The sufficient canditions of this picture of the optimal synthesis are as foflows (see 

It is assumed thaz the function f is continuously differentiable with respect to all 
arguments and satisfies th& monotonicity condition with respect to u 


